로봇학습

공과대학 전기·정보공학부 / 대학원

2025-1학기

권장 선수과목 데이터사이언스를 위한 머신러닝 및 딥러닝 2(M3239.005000) , 기계공학세미나 2(M3228.000400)

로봇학습은 로봇공학과 인공지능(AI) 기술을 결합하여 로봇이 인간처럼 경험을 통해 새로운 기술과 지식을 습득하는 방법을 연구하는 학문이다. 로봇학습을 이용해 로봇은 데이터와 주변 환경과의 상호작용을 통해 새로운 환경, 작업 및 상황에 적응하며 배울 수 있다. 로봇학습에는 로봇이 모든 시나리오에 대해 명시적 프로그래밍 없이 자율적으로 작업을 수행할 수 있는 능력을 갖출 수 있도록 다양한 기술과 접근방법을 포함하고 있다. 로봇학습의 목표는 로봇이 실제 세계의 다양성과 불확실성을 다루며 변화하는 조건에 적응하고 작업을 자율적으로 수행할 수 있는 로봇을 만드는 것이다. 이 강좌에서는 모방 학습과 심층 강화학습을 포함한 로봇학습의 최근 발전을 리뷰한다. 먼저 Markov decision processes (MDP)와 전통적인 강화학습 기법을 리뷰한다. 그리고 behavior cloning, inverse reinforcement learning, policy gradient, deep Q-network (DQN), 생성적 적대 신경망(GAN) 및 생성적 적대 모방 학습과 같은 주제를 포함한 모방 학습, 딥러닝 및 심층 강화 학습의 최근 개발 동향을 리뷰한다.

연관 도서

이전
다음

    데이터가 존재하지 않습니다.

연관 논문

이전
다음

    데이터가 존재하지 않습니다.

연관 강의

이전
다음
TOP