확률 그래프 모델

공과대학 협동과정 인공지능전공 / 대학원

2025-1학기

권장 선수과목 최적화기법(430.709A) , 로봇학습(M2608.002700)

확률 그래프 모델은 확률 변수들 간의 조건 의존성을 그래프 형태로 나타낼 수 있는 통계 방법론으로, 대용량 변수들의 복잡한 상호관계도 조밀하게 표현할 수 있다. 근래 컴퓨터 비전, 자연어 처리, 로봇공학, 컴퓨터 시스템, 계산 생물학 등 인공지능과 연관된 다양한 실제 문제들에 성공적으로 활용되고 있다. 본 과목에서는 확률 그래프 모델에 필요한 이론, 원리, 알고리즘 등을 폭넓게 배우며, 특히 주요 주제로는, 베이지안 그래프와 마코프 랜덤 필드의 표현, 합-곱 알고리즘과 신뢰 전파 알고리즘 등을 통한 그래프 모델의 학습과 추론, 변분 분석과 표본화를 통한 근사 방법, 최대 마진 방법과 깊은 신경망 등의 최신 기계 학습 기법 등과 그들의 실제 적용 방법과 예시 등을 다룬다. 본 과목은 대학원생과 일부 고년차 학부생을 대상으로 한다.

연관 도서

이전
다음

연관 논문

이전
다음

    데이터가 존재하지 않습니다.

연관 강의

이전
다음
TOP